时间复杂度 O(log n) 意味着什么?
事先了解算法的复杂性是一回事,了解其背后的原因是另一回事。
无论你是计算机科学专业的毕业生,还是想要有效处理优化问题的人,如果你想利用你的知识解决实际问题,这是你必须理解的东西。
先从简单直观的 和 复杂度说起。 表示一次操作即可直接取得目标元素(比如字典或哈希表), 意味着先要检查 个元素来搜索目标,但是 是什么意思呢?
你第一次听说 时间复杂度可能是在学二分搜索算法的时候。二分搜索一定有某种行为使其时间复杂度为 。我们来看看是二分搜索是如何实现的。
因为在最好情况下二分搜索的时间复杂度是 ,最坏情况(平均情况)下 ,我们直接来看最坏情况下的例子。已知有 16 个元素的有序数组。
举个最坏情况的例子,比如我们要找的是数字 13。
1 | 3 | 5 | 8 | 12 | 13 | 15 | 16 | 18 | 20 | 22 | 30 | 40 | 50 | 55 | 67 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
十六个元素的有序数组
1 | 3 | 5 | 8 | 12 | 13 | 15 | 16 | 18 | 20 | 22 | 30 | 40 | 50 | 55 | 67 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
选中间的元素作为中心点(长度的一半):
1 | 3 | 5 | 8 | 12 | 13 | 15 | 16 |
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
13 小于中心点,所以不用考虑数组的后一半:
12 | 13 | 15 | 16 |
---|
重复这个过程,每次都寻找子数组的中间元素
12 | 13 |
---|
13 |
---|
每次和中间元素比较都会使搜索范围减半。
所以为了从 16 个元素中找到目标元素,我们需要把数组平均分割 4 次,也就是说,
简化后的公式
类似的,如果有 n 个元素,
归纳一下
分子和分母代入指数
等式两边同时乘以
最终结果
现在来看看「对数」的定义:
为使某数(底数)等于一给定数而必须取的乘幂的幂指数。
也就是说可以写成这种形式
对数形式
所以 的确是有意义的,不是吗?没有其他什么可以表示这种行为。
就这样吧,我希望我讲得这些你都搞懂了。在从事计算机科学相关的工作时,了解这类知识总是有用的(而且很有趣)。说不定就因为你知道算法的原理,你成了小组里能找出问题的最优解的人呢,谁知道呢。祝好运!